NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A PROGRAM MANAGER'S GUIDE FOR SOFTWARE
COST ESTIMATING

by
Andrew L. Dobbs
December 2002

Thesis Advisor: Brad Naegle
Second Reader: Latika Becker

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

December 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
A Program Manager's Guide for Software Cost Estimating

6. AUTHOR(S)

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

policy or position of the Department of Defense or the U.S. Government.

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

This thesis will assist current and future program managers by outlining a process to
ensure the software cost estimates developed for a system will be credible and supportable
throughout the life of the program. This thesis also identifies many of the problems associated
with software cost estimating and recommends potential solutions.

One of the critical parameters for estimating software cost is the quantity of source lines
of code (SLOC) required in the program. Therefore, this thesis examines the software cost
implications of improperly estimating SLOC and function points. Some of the other
parameters required to estimate the software cost include language, functionality, application,
software processes maturity, programmer skill level, design and reuse, productivity factors,
complexity, utilization and schedules. Many of these parameters overlap. For example, both
the complexity of the code and skill level of the programmer directly impacts the productivity
and schedule of the program.

This thesis provides a broad view of the software cost estimating process. In the
reference and appendix section, a list of valuable resources including commercial estimating
models is provided for further assistance.

14. SUBJECT TERMS Software Cost Estimating, Software Development, Metrics, Source Lines of
Code,

15. NUMBER OF
PAGES 79

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION

CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited

A PROGRAM MANAGER'S GUIDE FOR
SOFTWARE COST ESTIMATING

Andrew L. Dobbs
GS-13, Department of the Army
B.S., Athens State College, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PROGRAM MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
December 2002

Author: Andrew L. Dobbs

Approved by: Brad Naegle
Principle Advisor

Latika Becker, Ph.D.
Associate Advisor

Douglas A. Brook, Ph.D.
Dean, Graduate School of Business & Public Policy

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This thesis will assist current and future program managers by outlining a process
to ensure the software cost estimates developed for a system will be credible and
supportable throughout the life of the program. This thesis also identifies many of the
problems associated with software cost estimating and recommends potential solutions.

One of the critical parameters for estimating software cost is the quantity of
source lines of code (SLOC) required in the program. Therefore, this thesis examines the
software cost implications of improperly estimating SLOC and function points. Some of
the other parameters required to estimate the software cost include language,
functionality, application, software processes maturity, programmer skill level, design
and reuse, productivity factors, complexity, utilization and schedules. Many of these
parameters overlap. For example, both the complexity of the code and skill level of the
programmer directly impacts the productivity and schedule of the program.

This thesis provides a broad view of the software cost estimating process. In the
reference and appendix section, a list of valuable resources, including commercial

estimating models, is provided for further assistance.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

I1.

I11.

TABLE OF CONTENTS

INTRODUCTION...cuuiiireceensnecsnensnecssessssecssesssassssassssssssasssssssssssssssssasssssssssssssssssassnse 1
A. PURPOSE 1
B. BACKGROUND ...uuciiiitiicninsnicsninsnesssessssssssessssesssessssssssasssssssssssssssssassssessssss 3
C. SCOPE ...uuiitiitrctictnnteneessesseissessssessassass 3
D. RESEARCH QUESTIONSuuciiiiiinninnnncsnensnecssessssesssnssssscsssssssssssassssesssans 3
1. Primary Research Questioncccovveerccsssnnreccsssnnsecsssnnnecsssnssnccssonnes 3
2. Secondary Research QuUesStions.........ccceeecvvercccnecssnrcssnenessnsrcssnsecsnnees 4
E. METHODOLOGY ...uuuicriiiniiniinninsneisnisssensssessssnsssessssssssssssssssssssssssssssssssssssns 4
F. ORGANIZATION ..uuuicuirnnensnenssnecsnssssesssassssecssnssssssssessssssssssssassssassssssssssssasass 4
G. BENEFITS OF THE ANALYSIS...uiiiiiiictiinennnenseicsnecssssssecssssesens 4
METHODOLOGIES, MODELS AND PROCESSESSuuuinennennnecsuenssnccsenenne 5
A. PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES 5
1. Waterfall/Traditionalcceeeneenneennennsnensennseensennsnensecsssecsessnens 6
2. Evolutionary Development 7
3. Incremental Developmentceeeeeciiisnniicsssnneccsssnnenccsssnsenccssnnsenesnns 7
4. Prototyping Development.........eicceivericcissnricsssnsncsssssnsesssssssssssssnsens 9
5. Spiral Development..........ccueicnceicssrecssnnccsssnessssscsssnsssssscssssssssssssanes 10
6. Object-Oriented Development........cccceeececcvnnrccsssnerccssssnseccscnnssecsnes 10
B. PRIMARY METHODS TO ESTIMATE SOFTWARE COSTS.............. 12
1. ANALOZY ..corvnrriiiissnniicsssnnicssssssiesss 12
2. Parametric EStimating........cceecivvieniveriniercsssnncssnncssnencsssnncssssscssnsens 13
3. Bottoms-up Approach 14
4. Engineering Judgment...........ccceveiciveicssnncssnnicssnnscsssnesssnesssssessnsseses 15
C. SOFTWARE COST ESTIMATE PROCESS........ueiivircnirnernnecsnecnnees 16
1. Design Baseline 17
2. SOEWATE SIZE cccuueeeeennriiiniiisniiinnencsnnessniessnecssnecssssesssssessssssssssesssnes 18
3. Environmental INPULS.......ccoovviieivvercissencsssnicssnnicsssnicssssessssnssssssossssseses 20
4. Software Baseline Cost EStimatecceeeeeiseeicseecssnecccsneecssneecsnnee 24
D. SOFTWARE COST ESTIMATING MODELSccinicrenssnenseecsaecanes 24
DATA TO BE ANALYZED.....cuiiiiiiuiinniineissicseisssnsssesssssssssssssssssssssssssssssssssns 27
A. REQUIREMENTS..uuiiiiiitinninnninsnecnssecsnssssensnssssessssssssssssessssessssssssssssasssns 28
1. INEEIVIEWS.uueiiinieiiiieinineisintecnsnnecssnnecsssnecssanesssseessssnsssssesssssesssssesssssesses 28
2. Program Data...........cueievveicrcneicssnnicssnnicssnnncnns .30
B. SCHEDULE......couuiiiiiiiiiiieinninsneisssissseesssesssicssssssssssssssssssssssssssssssssssssssass 30
1. INEEIVIEWS.ouceiueeeiuiiineiseentinnnecnensnesssecsnecsaesssaesssessssessssssssesssassssessaane 30
2. Program Data........cceeiieiicsnniicsisnnicssssnsecsssssssscsssssssesssssssssssssssssssses 30
C. PROGRAM PLANNING.cccoveeiruensnncsaensnccsseessnecsannes .31
1. INEEIVIEWS.uueiiiniiiieeinsnnensntecssneecssnnecsssnecssanessssnesssnessssnsssssessssesssssessns 31
2. Program Data..........ccueievveicscnnicssnnicssnnccssnnecnns .31
D. SOFTWARE MAINTAINANCE AND SUPPORTABILITYccceevuveecnnee 32

Vil

1. INEEIVICWS.uuueriiierinnricsssnnnessssnnrncssssnssesssssnssns 32

2. Program Data...........ceievveicncnnicssnnicssnnncssnnccnns .32

E. DATA SUMMARY ..uuiiitiiiiiiinsnnisninsnnsnisssisssnsssesssisssssssssssssssssssssssssssssss 32

IV. ANALYSIS OF DATA 35
A. REQUIREMENTS ANALYSIS aucooiiiiiiniiiinniennnicssnsssessssesssssssssssanenns 35

1. Requirements Definitioncccooveeeevvercnsnncssnnccssnnicssnncssnncssnsnessnsnenes 35

2 SLOC and Function Points Estimates.........cccceeeeeecscsnrrccscsnnreccssnnnes 35

3. Advanced Technology Impactcueeevvueicrvnicscneicssnnicssnecssssessannes 35

4. User INVOIVEMENTuueiiieiivneiecsisnrecssssnsncsssssssscsssssssesssssssssssssssssssssns 36

5 Requirements Development FrameworK..........ccevveeeeccvrcscercscnenenes 36

6 Budget Cuts and Politicscccovvvericiscsnnccsisnnncssssnnrecsssnnsssssssssscsnes 36

7. Improper ASSUMPLIONScccvvueiercricssnncssanicsssnesssssessssessssnssssssosnsssses 36

B. SCHEDULE REALISM.....cciiiiiniiiiinninnsnecnnissnessessssesssssssssssssssssessssssssees 36

1. Unrealistic Schedules........oeiineiineensecsennsensecnsnecsessssensecsssecsaens 36

2. Exaggerated Productivity Ratesccccccveervcnrrccsisnnrecsscnneccscsnnnecscnns 37

3. Backing into Schedulescuiceicivnicisninssnnicssnncssnncssnnncssssncssnnecnes 37

C. INITIAL PROGRAMMING PLANNING.ccctiitrerueinnncsnensnncssnsssenssseenns 37

1. Poor Planning and Processescoeiievveccssnrccssnncssnncssnnncsssencssnsscnes 37

2. Staffing and Training Problemscceiiecicvnnnicnsssnnrccsssnsnecsssnnnes 38

3. Reuse and COTS ..iineeniinnninseenseecnsnecsensssesssessssessssssssssssessssssssess 38

D. SOFTWARE MAINTENACNE AND SUPPORTABILITYccccceeueeunee. 38

1. Initial Unstable Requirementscccceceeecvceeicssnnicssnncssencssnrcscnsnenes 38

2. Initial DeSi@N....ceuueiiiiiisnricsissnnrensssnrnccsssassecsssssssesssssssessssssssssssssssssssnns 38

3. Testing ReqUIremMEenNts.......ccccveeeervercsssnncssnncssnrcssnsncssnsncssssnessssscsssscses 39

E. DATA ANALYSIS SUMMARY ..ciiiiiirninsninsnncsnecsscsssnsssessssnessessssssssesssne 39

V. CONCLUSIONS AND RECOMMENDATIONS....ccooviirensnncsnensancssnecsansssnssssassnns 41
A. REQUIREMENTS ANALYSIS STABILITY ..ccceeieneissnicsenssssossesssnsossassans 41

B. SCHEDULE REALISM.....ccuiiiiiiniinininniissnicssisssnessssssssssssssssssssssssssssssssssses 42

C. PROGRAMMING AND PLANNING......ccevevruecruesuesnnee 45

D. SOFTWARE MAINTAINABLITY AND SUPPORTABILITY 47

E. SUMMARY ...utiiiintinnnnnineiseisssissnisssessssesssesssssssssssssssssssssssssssssssssssassssssssass 49

F. RECOMMENDATIONS FOR FURTHER ANALYSIS ...cccccivvviinveicinnenes 49

G. VALAUBLE RESOUCES........uuuiiiiitinnninninsecnsesssesssnsssesssessssesssssssasns 49
APPENDIX A. INDIVIDUALS INTERVIEWEDuuciviiniinnninneicsnncssencssncsssssnnes 51
APPENDIX B. SOFTWARE COST ESTIMATING MODEL WEBSITES.......... 53
LIST OF REFERENCESuuiiiiiiiiniinninnisnnisssisssisssissssissssssssssssssssssssssssssssssssssssssases 55
INITIAL DISTRIBUTION LIST ..uuuiouiiiiiiiiniinsnnnsnecsnensnesssessssecssnssssesssessssssssssssassssssssases 59

viil

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

LIST OF FIGURES

Software Cost Estimation Accuracy Versus Phase [From: Ref. 3] 2
Software Language Translation Process [From: Ref. 7]......cccccceviininiininnnnn 6
Software Waterfall Model Development [From: Ref. 9]......c.cccccvveveiiriinnnnnen. 8
Evolutionary Model With User Involvement [From: Ref. 9]cccceeei. 9
Incremental Software Development [From: Ref. 9]cccooeeiiiiiiiiiiii 9
Spiral Development Methodology [From: Ref. 9]......ccccoviiiiniiiiiiniiee 11
Object-Oriented Inheritance From Class To Object [From: Ref.10]............... 12
Cost Estimating Relationship Development Process [From: Ref. 7]............... 14
Normalization of Data [From: Ref. 7] ..o, 15
"Bottoms Up" Software Estimating Process [From: Ref.11].......c.ccccceeennnee. 16
Example of Questionnaire to Industry [From: Ref.14]ccovveeiiiiieiienns 21
Support Cost for Data Processing Environments [After: Ref. 9].................... 47

X

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Table 6.
Table 7.

Table 8.
Table 9.
Table 10.
Table 11.

LIST OF TABLES

Software Estimating Process Elements [After: Ref. 9].......ccccoociviiiiiennnnen. 18
Definition Checklist for SLOC [After: Ref. 9] ..o 20
Types of Environmental Factors [After: Ref. 15].....cccoviiiiiiiniininiiiiee, 21
REVIC Example of Programmer Capabilities [From: Ref. 15] 22
General Characteristics of Each Maturity Level of The CMM [From: Ref.

L PO RUPR USRS 23
Software Risk Areas [After: Ref. O c..cooovviiiiiiiie e 29
Factors Where DoD Software Lags Behind Commercial Programs [After:

REE.24] e 29
Commercial Model Estimating Capabilities [After: Ref. 24]..........ccceeennen. 43
Example of Developers Years Experience [From: Ref. 27]ccccceeiniennn 44
Software Productivity (SLOC/staff month) [After: Ref. 30]......ccccccvveennnennne. 45
Software Supportability Checklist [From: Ref. O]cccoocviiiniiniiiiiics 48

xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

ACRONYMS

ACAT Acquisition Category

CASE Computer Aided Software Engineering
CAIG Cost Analysis Improvement Group

CARD Cost Analysis Requirements Document
CER Cost Estimating Relationship

CMM Capability Maturity Model

COCOMO Constructive Cost Model

CSCI Computer Software Configuration Item
DoD Department of Defense

EIA Electronics Engineers Association

GUI Graphical User Interface

HOL Higher Order Language

ICE Independent Cost Estimate

IEEE/EIA Institute of Electrical

IPT Integrated Product Team

ISO International Organization for Standardization
LCCE Life Cycle Cost Estimate

MAIS Major Automated Information System
MDAP Major Defense Acquisition Program

ORD Operational Requirements Document

OSD Office of the Secretary of Defense

PC Personal Computer

REVIC Revised Intermediate Constructive Cost Model
RFP Request for Proposal

SA Software Acquisition

SEER System Evaluation and Estimation Resource
SEI Software Engineering Institute

SETA Systems Engineering Technical Assistance

SLIM Software Life Cycle Management

xiil

SLOC
SU

Source Lines of Code

Software Unit

X1V

ACKNOWLEDGMENTS

I would like to thank Professor Brad Naegle for his guidance and support during
the preparation of this thesis. His understanding of the software development process

was immensely helpful.

I would like to thank Dr. Latika Becker for agreeing to be my associate thesis

advisor. Her time, patience and professionalism were greatly appreciated.

I would like to thank Jack Calvert for being my mentor for the past 11 years. His

storehouse of data and expertise was helpful in preparing this thesis.

I would like to thank my supervisor, Richard Brown, for giving me the

opportunity to advance my career through education.
I would like to thank Gary and Beverly Fuller for their assistance and guidance.

I would also like to thank the following individuals for taking the time to provide

me with information.

Professor Dave Matthews
Jayson Wilson

Ken Shipman

Martha Spurlock

Randy Mills

Robbie Holcomb

Ed Strange

Jerome Olerich

Lastly, I would like to thank my wife, Debbie Dobbs, for being supportive of me
for the past two years. Her help in proofreading and editing this thesis was a tremendous

help.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

EXECUTIVE SUMMARY

Historically, software costs estimates have consistently been underestimated. The
purpose of this thesis was to identify why these estimates were inaccurate. The methods
used to collect data involved interviews with cost analysts, program managers, and
educators. Then two data sources were used to validate the problems identified by the
professionals. Then, books, trade journals, briefs to industry, software manuals, and
Internet sources were used as part of the analysis. The thesis is a tool that can be used to
assist current and future program managers by outlining processes to ensure the software
cost estimates developed for a system will be credible and supportable throughout the life

of the program.

One of the critical parameters for estimating software cost is the quantity of
source lines of code (SLOC) required in the program. Therefore, this thesis examines the
how the various phases of the program can impact the accuracy of the SLOC estimates.
Some of the other parameters required to estimate the software cost include language,
functionality, application, software processes maturity, programmer skill level, design
and reuse, productivity factors, complexity, utilization and schedules. Many of these
parameters overlap. For example, both the complexity of the code and skill level of the

programmer directly impacts the productivity and schedule of the program.

This thesis identifies processes and plans that will improve the overall software
development and result in more accurate estimates. Chapter V includes valuable
resources for the program managers, and Appendix B includes a list of some of the more

current software cost estimating models.

xvil

THIS PAGE INTENTIONALLY LEFT BLANK

xviil

I. INTRODUCTION

A. PURPOSE

The purpose of this thesis is to educate program managers on software cost
estimating. Software cost can comprise as much as 90 percent of some programs.
[Ref.22] Therefore, understanding the software cost estimating process, and what drives
the cost, is vital for the program manager to successfully manage the program. Because
most program managers receive only a few weeks of formal education on the software
acquisition process, few fully understand the magnitude of developing a cost estimate.
The DoD schools recognize this problem and are currently adding and reviewing courses

that will improve the education of software acquisition managers. [Ref. 1]

The accuracy of the software cost estimate is directly related to how well the
program's software development is managed. Unfortunately, there is an alarming rate of
software development failures, as described in the next few paragraphs. In 1995, the
Standish Group, a firm that routinely conducts market and technology research for
Fortune 500 companies, government agencies and major universities, conducted a study
on the success and failure rates of software projects. The study sample size was 365
respondents and represented 8,380 software applications. Of these, only 16.2 percent of
the projects were completed on-time and on-budget; 52.7 percent were completed but
were over-budget, over the time estimate, and did not have full functionality; and the

remaining 31.1 percent were cancelled during the development cycle. [Ref. 2]

Another finding in the Standish study reported that 52.7 percent of the projects
cost 189 percent more than their original estimate. In addition to cost overruns, one third
of the projects also experienced time overruns by 200-300 percent. The primary reason
for these cost and schedule problems is that for every 100 projects, there were 94 restarts.
This thesis examines why there are so many restarts, and what if anything can be done to

reduce this trend.

Program uncertainties decrease as the development matures and advances through
the various phases, and as these uncertainties are decreased, ultimately cost estimates will

improve Figure 1. [Ref. 3] Many of the uncertainties can translate into project restarts.

1

Clazses of peaple,
dala seUrces o supparl

Example sources of uncertainly,
human-machlng inlerface sofiware

4x

Query lypes, dala leada,
intelligent-terminal radeotis,

respanse fimes
/ Internal dala atructure,

2.00 — butfer handling technlgues

Detalled schedullng algerithms,
errar handling

1.25x / Pragrammer underzianding
) — al apeciications

o
[=r]
(=
£
8 '
o
=
i
o D.ax [—
o
DETe [—
0.53x —
0.35x Product Delalled
) Concept of Requiremenis deslgn dealgn Accepted
operallan Specifleations specificallons speciflcations aoftware
fu fu i o i)
Feasibility Flans and Produst Detalled Develpment and test
requirements deglgn design

Fhases and milezlensa

Figure 1. Software Cost Estimation Accuracy Versus Phase [From: Ref. 3]

As a program manager, you may hear that some commercial models are
estimating software cost within 75-80 percent of the actual costs. Compared to the
Standish Group results, 75-80 percent of actual cost is very good. However, the
successes of these models are dependent upon how well the program is defined, and the

accuracy of the initial SLOC estimates.

The models are also improved through a process called calibration. Calibration of
the model involves inputting historical cost data of similar programs that the model will
use as a basis to estimate future cost. However, if the database does not include similar
projects, then the probability of the estimate falling within the 75-80 percent accuracy

range is unlikely.

This thesis outlines processes that will improve the probability of success for the
software intensive acquisition program. The result of following these processes should

ultimately improve the software cost estimate.

B. BACKGROUND

Until recently, the Department of Defense (DoD) 5000.2-R required every Major
Defense Acquisition Program (MDAP) and Major Automated Information System
(MALIS) program to prepare a Life Cycle Cost Estimate (LCCE) prior to each milestone
review. [Ref. 4] The Office of the Secretary of Defense (OSD) cancelled the DoD 5000
series on 30 October 2002, citing guidance that was overly prescriptive and that did not
represent an acquisition policy environment encouraging efficiency, creativity, and

innovation. [Ref. 5]

However, in order to provide guidance to the MDAPs and MAISs, the OSD
immediately released the Interim Defense Acquisition Guidebook. For all practical
purposes, the new guidebook is the same as the DoD 5000.2-R, and once again, requires
MDAPs and MAISs to continue preparing a LCCE. [Ref. 6] Whether it is required or
not, a program needs to have an estimate to track the progress of the project. The

estimate will also be useful in defending and justifying the continuation the program

The LCCE is a comprehensive cost estimate that includes all costs associated with
the program for its complete life cycle including both contractor and Government in-
house costs for program management support. The LCCE also includes, development,
test, training, deployment, operational and maintenance cost. Software related costs are

included throughout the life cycle process. [Ref. 6]

C. SCOPE

This thesis identifies and analyzes significant software development issues facing
program managers, and recommends potential solutions. This thesis also will examine
processes that will improve the initial design requirements that are required to effectively

estimate software cost.

D. RESEARCH QUESTIONS
1. Primary Research Question
What are the problems associated with software cost estimating and what

solutions are available to the program manager?

3

2. Secondary Research Questions

What are the primary metrics for estimating software costs?

How does software programming productivity impact schedule and cost?
What are software reuse considerations?

How do you estimate software maintenance and support cost?

What are the recommended models for estimating software costs?

E. METHODOLOGY

Thesis research involved telephone and face-to-face interviews with program
managers, software engineers, instructors, and cost analysts who had experience with
software acquisition. These individuals provided valuable insight into the software
acquisition process. Other material reviewed for this thesis includes software engineering
textbooks, professional journals, software cost model manuals, symposium briefings and

Internet-based software web sites.

F. ORGANIZATION
Chapter II familiarizes the reader with methodologies, models and process that are

required to prepare software cost estimates.

Chapter III presents the data, outlines the primary causes of inaccurate software
cost estimates and lays the foundation for analysis. Chapter IV analyzes the data and
recommends potential solutions to the estimating problems. Chapter V summarizes the
analysis and provides recommendations to improve the overall software cost estimating

process.

G. BENEFITS OF THE ANALYSIS

The analysis provides the program managers with insight into software cost
estimating that will result in more accurate cost estimates. By improving the program's
cost estimate, resources can be allocated to ensure the software project remains on

schedule, within budget, and delivered with the desired capabilities.

II. METHODOLOGIES, MODELS AND PROCESSESS

The next sections will provide background information helpful in software cost
estimating. It includes methodologies to develop software requirements, cost estimating

methods and processes, and definitions to key software terms.

A. PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES

Software can be written in many languages. For example, Machine Language is
code written in 0's and 1's; Assembly Language is written in English and assembled into
Machine Language; Higher-Order Language (HOL) is similar to Assembly, but usually
easier to read and write (i.e., FORTRAN, COBOL, Basic, Ada, C++, and Java), and Very
High-Level languages, also called 4th Generation Language, are written to resemble the
spoken language that includes programs for spreadsheets, word processors and graphical

user interfaces (GUI). [Ref. 7]

On April 29 1997, DOD lifted a 1987 policy that required all military systems be
developed in Ada. The National Research Council reported that Ada (version 1995) was
superior over C, C++, and Java when applications required real-time processing, high-
assurance, and high-reliability for weapon systems. However, the report also noted that
Ada came in second behind COBOL for administration applications. [Ref. 8] Examples
of the various languages and a process required to go from the spoken language down to

the binary code required to execute the program is shown in Figure 2.

Regardless of the language used in the development, all software programs must
be developed through a systematic approach. One recommended approach is the Institute
of Electrical and Electronics Engineers/Electronic Industries Association’s (IEEE/EIA)
12207, "Standard for Information Technology--Software Life Cycle Processes" or
International Organization for Standardization (ISO) 12207. This approach is a generic
software process that recommends a set of development activities and documentation

alternatives for software intensive programs. [Ref. 7]

"How fast must | go to reach Columbus
from Davton in an hour?"

Programmer

{ Human)

4. \"I".R_‘r' _
ll”fﬂé;{:"(fll Compute speed given distance and time.

Interpreter or
Compiler

3. HIGHER
ORDER
LANGUAGE

SPEED = (PNEW - POLD) / DELTIM

LDA PNEW
1 SHF POLD
Compiler SHF AQ

LDA DM
DIV

SHF QA
STR SPEED

2. ASSEMBLY
LANGUAGE

Assembly 00010010
11000000

00010100

Figure 2. Software Language Translation Process [From: Ref. 7]

The ISO 12207 Primary life cycle process begins with: 1) acquisition process; 2)
supply process (providing software to the customer that meets the agreed requirements);
3) development process (includes system and software requirements analysis,
architectural and detailed software design, software coding and testing, software
integration, qualification testing, installation and acceptance); 4) operation process; and
5) maintenance process. This process is compatible with most of the leading software
development methodologies outlined below. The ISO 12207 primarily serves as a
checklist to ensure that all aspects of the software development are considered. The
methodology selected will have a significant impact on the development and maintenance

cost. [Ref. 7]

1. Waterfall/Traditional
The Waterfall methodology was developed in 1970 by W.W. Royce, and
considered to be the first formal disciplined approach for software development. [Ref. 3]

This methodology assumes that all the requirements are known up front and therefore a

6

complete design of the program can be achieved and the process of coding the software
can begin. Unfortunately, this methodology does not work well with the majority of

advanced technology programs. [Ref. 7]

For example, using this methodology may delay the delivery of a missile system
until all of the weapon capabilities are achieved. If a different development approach is
used, the missile could be delivered with limited capabilities at an earlier date. For
instance, the missile could be delivered immediately with the limited capability to destroy
fixed wing aircraft, even though the missile still lacks the capability to destroy
helicopters. The Army's Patriot missile system has been adding capabilities like this

example over the years using incremental software builds with tremendous success.

Another problem with the Waterfall methodology is that many of the errors in the
software will not be discovered until the end of the development. At this point,
correcting these errors will be time-consuming and costly. The Waterfall software

development process is shown in Figure 3. [Ref. 9]

2. Evolutionary Development

Evolutionary development begins the design process with only the core
capabilities and delivers an initial operational product. The next step in the process is to
add more functionality and refine the previous design. This process continues until the
program is complete. The advantages of this process are that it places a working product
in the hands of the user and allows them to provide input into future designs. The
disadvantage of the Evolutionary method is that it usually takes more time to complete
the project. The Evolutionary Development process with user involvement is shown in

Figure 4. [Ref. 7]

3. Incremental Development

Software is developed in a series of increments of increasing functional
capability. Like the Evolutionary methodology, the Incremental Development
methodology lets the user get involved early through a build-and-test process. The

Incremental approach is best suited when user requirements can be fully defined, or when

factors such as technical risks, funding instability, schedule uncertainties, or program size
warrant a phased approach. Other advantages to this methodology are a reduction in risk
and a firm foundation to meet the requirements of the remaining software builds/releases.
The primary disadvantage for this methodology is that it is not always easy to break up a
design into useful increments. [Ref. 7] The Incremental Development process of build

and release until complete is shown in Figure 5.

STETEM S STEM SEGMENT $PECIFICATION
REGQUIREMENTS
DEFIRITIOM \
SOF TWARE 5 OFTUWAARE RE GUIRBUEHT 5
REQUIREMENTS D0 CURE T
AR AL YIS }
Tl e
ey DESIGMN AHD F RELRMIWARY
¢50F) &
S0 FTUARE DETAILED EUTEEESETE IGN
SPECIFICATIOM DESIGH ‘::
i) (F INALY
A
CODING COMPUTER SOFTUSRE
FHELE";"I'EF]“R"' ARD LN S (C50E)
oty UMIT TESTING
[FOR) &
ATt COMPOMENT COMPUTER $0 FTWWARE
A |INTEGRATION AND |, COMPONENTS (C5Cs)
TESTING
R B Eud
(COR)
INTE G RATICM COMRUTER &1

COMFIGURATIDH ITEA
TESTIM s : [o5Ch

TEST SYETEM TESTED
READINES S TESTING SOFTVERE
R BB
(TRR) &
A MAINTAIN
Fon SOF TWWARE
FiA

Figure 3. Software Waterfall Model Development [From: Ref. 9]

{ Repeat %
Until
Set Objectives: “Engineer” an | | Complete
Performance I Increment
Technical
Qualit -
. i 4 Code and Test
* i Increment
r—b [Select System | —Jp!
| Architecturs | o Deliver the =
+ Increment for User
i Prepare N Evaluation
Evolutionary *
. Development Plan | [Analyze Results]
User User
__Feedhack _J L Feedback /
Figure 4. Evolutionary Model With User Involvement [From: Ref. 9]
Increment 1
l I Ino &
| Iz 2
: \ Iz =
| ! qZZZZE'ZZEI .
| 1 1 [
: i i i e f
| 1 1 I 1 1 lne M
! | | ¥ | |
| | I | I I i
| | | L | i Final |
Felease 1 Felease 2| FRelease 31 Release 4 Release & Release 5 Dielive ry I
- Phase 1 - * Fhaze 2 -
i o=
Time
Figure 5. Incremental Software Development [From: Ref. 9]
4. Prototyping Development

The Prototyping Development methodology is similar to a hardware bread-board

design where basic technical components are integrated to establish that the pieces work

together.

Like bread-boarding, prototyping software developments are relatively "low

fidelity" compared to the eventual system. This procedure provides the user with an

experimental system to evaluate their initial requirements. Once the initial requirements

are understood, the final requirements can be easily determined. Computer-aided

9

software engineering (CASE) tools are extremely beneficial in developing prototype

systems.

CASE tools help the contractor efficiently develop relatively defect free, easily
modified, quality software. Besides providing the user with a prototype system, CASE
tools can also be used for planning and estimation, requirements analysis and design,
architectural design flexibility, improving productivity, shortening lead time, and freeing

up software developers from mundane tasks.

5. Spiral Development

The Spiral Development model was developed by Dr. Barry Boehm in 1987 as a
risk-reduction approach to software development. This methodology illustrates the
software development as a spiral with radial distance as a measure of cost or effort, and
angular displacement as a measure of progress. Looking at Figure 6., starting at the
center with project definition and working clockwise through the spiral, each cycle
includes a review of objectives, alternatives, constraints, various analyses (including risk

analysis), and one or more products are delivered. [Ref. 9]

The advantage to the Spiral model is that it emphasizes evaluation of alternatives
using risk analysis, and provides flexibility to the software development process. This is
accomplished by using basic Waterfall building blocks and Evolutionary/Incremental

prototyping approaches to complete the software development. [Ref. 7]

6. Object-Oriented Development

With the Object-Oriented Development methodology, procedures and data are
combined into unified objects. The Object-Oriented system is a collection of classes and
objects and how they relate to each other. As an example of this class/object relationship,
Figure 7. illustrates the "class" as missile, and a guidance system as an "object". Because
the guidance system is a member or subset of the "class" missile, the guidance system
will inherit all of the same attributes from the "class" missile, such as cost, dimensions,

weight, range, and any other possible attributes. [Ref. 10]

10

DETERMINE OBJECTIVES,
ALTERNATIVES, AMND
CONTRAINTS

Support
and

Mainlenance
O bje clivas,
Abernatives,
ang

Implemen taticn
Objectivas,
Altarnatives,

Design

Altem stivas,

and Objectivas,
Constraints Allarnatives, Tystem /| Risk
and Froduct | Analysis Assessment

Objectives, |

Risk
Analy sis

Op eratonal
Protyping

Prowtyping

EVALUATE ALTERMNATIVES,
IDENTIFY AMD RESOLVE RISKS

U pdated
Operational
Protatyping

Enhancead
Operational

and Transition

Planning

Flanning
Training
Planning

Capability Site S pecification and
Intagration, Activation Preliminary
Activation S0Ds
and

& I
Constraints ¢ Project oo
3 —tr Dafinition | Protoeyping
R e view Concept of EimuEiions [Models,
] Engineering and |Oparation and Benchmarks|
Desian Project |System
and Plannng [Software Detiled Updaled
Design Detailed

Softwara
Architecturs

Int egra on
and Test

10C
DELIVERY

FOC
DELIVERY

FCA /PCA

FLAN NEXT PHASE

Cualification
Tasting

Farmal
Tesling

TEar
Acceplance
Test and

Training

and Test

Design
Code

C ode

Integration

DEVELOP MEXT LEVEL FRODUCT

Figure 6.

Spiral Development Methodology [From: Ref. 9]

The Object-Oriented programming is not usually considered a stand-alone

development process. An Evolutionary/Spiral type methodology should be used with the

Object-Oriented process, because it would be difficult to define all the required classes

for a major system or product in a single iteration. [Ref. 10]

For example, beginning in the center of the Spiral model, communication with the

customer helps define the program, and identify the classes or major design points. Then,

planning and risk analysis establish the foundation for the Object-Oriented project plan.

All technical work that follows will be accomplished through an iterative approach.

Object-Oriented programming always searches a library of classes to determine if reuse

software is available. If not, the Object-Oriented method begins the process of analysis,

design, programming, and testing to create the new class, and all the objects derived from

that class. The new class is added to the library, and the process continues until the end

of the development. [Ref. 10]
11

Class: Missile

Cost The object inherits all attributes of the class
Dimensions
Weight
Range
Velocity

Object: Guidance System

Cost
Dimensions
Weight
Range
Velocity

Figure 7. Object-Oriented Inheritance From Class To Object [From: Ref.10]

B. PRIMARY METHODS TO ESTIMATE SOFTWARE COSTS

1. Analogy

With an Analogy method, lines of code and cost estimates are based on a
historical database of similar type programs. This methodology is usually the most
accurate means during the beginning of a program. For example, to estimate the lines of
code and software cost associated with a new cruise missile interceptor, the analyst would
search the database for an existing missiles with similar launch, flight, fusing and
warhead characteristics. If one or more similar missiles are included in the database, the
software development and maintenance cost could then be used as a basis for the new
estimate. However, due to the advanced technologies within defense programs, most
databases do not include similar projects. The Analogy technique is often used as a

secondary method to check other estimates for reasonability. [Ref. 7]

12

2. Parametric Estimating

Parametric estimating involves using mathematical equations based on cost
estimating relationships (CERs) to estimate software costs. As a top-level example of a
CER, an analyst may provide a program manager a quick estimate based on the SLOC
anticipated for development of a missile multiplied by a cost figure (i.e., 14,000 SLOC
multiplied by $200 yields an estimated cost of $2.8 million). The CERs express cost as a
function of one or more cost driving variables, and are developed from historical

databases of similar software projects.

In order to develop a CER, the analyst begins by analyzing a project to determine
what factors could influence the cost of the project. Using the missile analogy again, the
analyst may speculate that SLOC developed and maintained for a missile could
potentially be used to estimate the total software development cost of a new missile. At

this point, the analyst would collect data to validate those assumptions.

Care must be taken to ensure that the data is normalized, for instance comparing
the cost per SLOC of a missile developed and built five years ago will be different from
one built last year. Therefore, the cost of the missile built five years ago will be escalated
to a more current year. Once this is accomplished, the relationship can be tested, by
plotting the normalized historical data from all of the different completed missiles. If the

resulting graph is linear, then there is a good chance the relationship is valid.

A larger database will statistically provide a higher confidence that the
relationship is valid. There are user-friendly statistical software programs available to aid
in this process. Figure CER shows the process required to create a CER. The Parametric
estimating method is normally used to estimate the overall system or at the computer

software configuration items (CSCI) level. [Ref. 7]

A CSCI is defined as a collection of software that satisfies a common end use
function. Typically, when the size of the overall system or CSCI exceeds 100,000 lines
of code, it is further partitioned into more manageable tiers called software units (SUs).
Parametric software cost estimating models are fairly easy to use and can provide quick

estimates that in most cases are more accurate than other methodologies. [Ref. 7]

13

Opportunity Identification Data Collection Drata Evaluation & Normalization |-
- ldenidfy the opportunity A Infarmation System Dalabase (ERP) - Unit Cost/Cuantity
ta gather data and develop - Library / Internat - Constant Year §
CERs - Contractars - Escalation
- DODVNAS A - Gomplewity
4
¥
Selaction of Yariables Test Ralationships Regrazsion & Curee Fitting
Wi eighl # of L'l.rE'.'.'II'II.]S |l con - " = al’?‘qh
Thrust Matarials ,.f-""_- C=a(
Range MIF s ’ C=a+b(¥)
Impulse SLoC #of Drawings
- ¥
L J
Data Analysis and Correlation Select CERs alidation
=« Corralation batrix Lo - Select the ralationship that .y Gain intamal and extermal
- Data Plats "best” estimates the objective. acceptance of the estimating method
- Dimensional Analysis
¥ Y
i
Panadic Revalidation
Approval CER Databasze
- Llze CERs in prnpns.al-.: and gain Ll - Incorporate approved CERs inta the ; »To Cost Models
agreament on uze by the cusiomer. estimating method databasze. |

Figure 8. Cost Estimating Relationship Development Process [From: Ref. 7]

A detailed process to normalize data required to create a CER is shown in Figure
9. There are also polices and procedures for calibrating and validating the software cost
estimating models. At the time this thesis was being written, OSD was re-writing/re-
placing the 5000 series that included most of the policies and requirements required for

Acquisition Category (ACAT) programs.

3. Bottoms-up Approach

The Bottoms-Up estimating approach requires the project to be sufficiently
designed to permit reasonable estimates at the SU level. These detailed SU cost
estimates are then added up to the CSCI level and ultimately at the project level. This
approach is time consuming and only as good as the design. As the quality and design of
the project improve, so does the estimate. This method does make it easier to track the

success of the project, because of the level of detail. [Ref. 7]

One of the major disadvantages of this method is that many times the costs for
software integration activities are not captured. Just like the other methodologies,
historical data is not always available to compare projects. The detailed process required

to complete a Bottoms Up estimate is illustrated in Figure 10.
14

‘Percent electronics

Hormalizing Cost Data Mormalizming the Size Data Mission Application
M aking unitsfeleme s of Weight and density ‘Grouping vehicleshy
cost consistent b cnm_pa.‘tisnm) p{complexity
‘Making wear of econommes “Weight contingency ‘Calthrating like vehicles
consistent applications

:

Homogeneity of End Ttems

docount for absent cost
items

Femoving mapplicable cost
items

w

FeonringMon-Feonyme

State of Development
Wariahlaz

-Primne contractor's estimate
‘Time-phased costs
Flight-article equivalent
anits

w

Mission umiqueness
-Product uniqueness

+

Nommalimns the

Envirornment [Platform)

Manned space welucle
Tnmanned space wehicls

-deraspare
-Shiphoard
‘Commercial
Figure 9. Normalization of Data [From: Ref. 7]
4. Engineering Judgment

The Engineering Judgment estimate is basically what is considered an educated

basis for the estimate.

Therefore, an engineering estimate, or what is fondly referred to a "back of the

15

guess. With this approach, experienced software engineers estimate the size of the code
based on previous software experience and their knowledge of functions to be developed.
Several cost analysts with over twenty years experience in the estimating profession,

have stated that many times, because of poor program definition, there has been no real

envelope" estimate, is as good as any other estimating methodology. For example, the
analyst might multiply a current cost do develop code by the estimated SLOC count, and
then double or triple the estimate. Unfortunately, this is the methodology with which
most software estimates are forced to begin. This method is useful for determining inputs

into other models, but not sufficient for use as the basis of an estimate. [Ref. 7]

Request for proposal/ Customer Data Flow System Operations

Statement of Work Derived Diagrams Concept Concept

Analysis Requirements

Requirements Hardware Architecture Centralized Software

Allocation Software Distributed Requirements
Other

Inputs CSCI Functional Language Functions &

Processing Identified Decomposition Determined Modules

Outputs Flow Charts Named & Sized

Documentation Trade Studies CSCI CSCI Tasks System Engineering

Design Reviews and Tools Schedules Manloaded Software Engineering

Identified Identified Determined By Schedule Test Engineering

Supervision Walk Total Bottoms Up

Throughs, S/W Cost and Schedule

Support Library Estimate

Figure 10. "Bottoms Up" Software Estimating Process [From: Ref.11]

C. SOFTWARE COST ESTIMATE PROCESS

Prior to beginning the process of preparing the cost estimate, the program office is
required to prepare a Cost Analysis Requirements Document (CARD). This document
provides a description of the most important features down to the Work Breakdown
Structure (WBS) level of the program and serves as the basis for all cost estimates. It
also defines and provides quantitative descriptions of the program characteristics. [Ref.
4,18] Because of the magnitude of this document, an Integrated Product Team (IPT)
should be established to prepare the CARD. Other documents such as the Operational
Requirements Document (ORD) and Performance Specification documents will assist in
the development of the CARD. The IPT should include representatives from all of the

critical areas of the program.

The Office Secretary Of Defense, Cost Analysis Improvement Group (CAIG,)
requires that a draft of this document be delivered to them 180 days prior to a milestone
review and a final copy 45 days prior to the review. The CAIG will use the CARD to
prepare an Independent Cost Estimate (ICE) of the program. [Ref. 4]

The CARD is a living document, and it is critical that configuration control be
maintained throughout the life of the program. The program office is required to prepare

16

a new CARD if there are any major changes to the exiting program or if alternative
designs are evaluated. For example, the initial CARD was based on a missile that only
intercepts fixed-wing aircraft. Now the User has delivered a new ORD that requires the
missile to also intercept helicopters, unmanned vehicles, and cruise missiles. Therefore, a
new CARD must be developed to incorporate the additional requirements. This is a

prime example of "requirements creep," and in most cases a "new start" is required.

The software cost estimating process in Table 1. provides a systematic approach
to successfully prepare the project software cost estimate. This process should be
managed through the IPT. The process begins with the IPT breaking the total software
development project into manageable lower-level CSCI and SU elements. Then, the
team can determine the scope (size) of each element, assess the software development

environments, and perform assessments of alternatives and risk factors.

Once the functional decomposition is complete, the various environments can be
quantified, evaluated, and "high/low" boundaries can be assessed. This will establish the
initial parameters required for the baseline estimates of cost, schedule, resources, and
support. This process was designed to prepare the project for a contactor bid. However,

it can be easily adapted for any phase of the development. [Ref. 9]

1. Design Baseline

The most effective method of managing a large software development is to
decompose the project into manageable parts. Decomposition can be accomplished by
two different methods. One involves a functional decomposition of the program, which
divides it into basic components from the user's perspective. The other is design-
decomposition, which divides the project into software components or modules. Both of
these methods make it easier for the analyst to realistically estimate size, time, and
manpower required for each function. This has been referred to as the "divide and
conquer" method, and is also in line with Spiral and Evolutionary development methods.

[Ref. 9]

17

Phase

Major Activity

Specific Products

Design Baseline

Define a point of sufficient precision to
identify the number of CSCls and the
required functionality of each.

List of CSCls, functionality
and similar completed projects
or CSCls.

Size Baseline

Using the products from the Design phase,
define the expected size for each CSCI.

List of CSCls with appropriate
size information

Environmental
Baseline

Using the products from the two previous
phases, determine the environmental
characteristics required and available to
perform the job.

List of software cost model
parameters and their initial
settings along with a written
rational for each.

Software Baseline
Estimate

Using the size and environment products,
make a software cost model run (using
whatever model best satisfies the
organizations needs).

Output from the software cost
model showing schedule an
cost information.

Project Baseline

Using the output from the Software Baseline
Estimate phase, add those elements not
included in the particular software cost
model (each model has a specific set of
items not included in the estimate) and
remove elements included in the estimate
that are not part of the project.

A complete estimate of the costs
and schedule for the software
portion of the project.

considering such factors as expected
competition, type of contract, budgetary or
personnel constraints, risk analysis, etc.
Convert labor and other direct charge (ODC)
estimates into contractor's price and
determine the Project Bid.

Risk Analysis Determine the cost/schedule risk associated Risk assessment, risk graphs
with the Project Estimate. Make changes to risk memorandum with
the size or environment products to perform Parameter-by-parameter risk
what-if analyses. Determine the size and/or explanations.
environment setting required to validate
the final software bid.

Project Bid Perform analysis of the Project Estimate, Project Bid.

Dynamic Cost

Using existing known environment and size

Cost-to-Complete, Schedule-to-

Projection information, produce a revised Project Estimate |Complete, Size-to-Cost.
and determine the remaining costs and
schedule to complete for the on-going project
Table 1. Software Estimating Process Elements [After: Ref. 9].
2. Software Size

Predicting the size and complexity of the software required for a program is the

leading cause of cost overruns and schedule slips. [Ref. 9] Most of the cost models

18

reviewed for this thesis require an input for how many SLOC would be in the project.
Thus, the first basic step in developing a cost estimate is determining the lines of code
required for the program. The size and complexity of the program will significantly
influence the resources required to estimate the program. To make this even more

complicated, requirements creep will continually increase the estimated lines of code.

SLOC can have different definitions based on the user and the developer. The
Software Engineering Institute recommended that DoD organization use SLOC as the
first measure of software size. The SEI also recommended that program offices should
establish a clear definition of what is considered a SLOC. Table 2. is provided to assist
the program manager in determining which type of statements should be included and
excluded from the SLOC count. For example, if the checklist in Table 2. is provided in
the request for proposals, the resulting bids can be evaluated with less confusion. [Ref.

13]

Another factor to consider when calculating SLOC counts is how much of the
software development will be reuse code. Reuse code is pre-existing code from another
software program and used in the new development. Sometimes, incorporating reuse
code into the program can save significant resources. However, if the pre-existing code
is poorly designed and documented, the cost can actually be greater. The quality of the
reuse code must be considered when estimating the cost. Another factor to consider is
whether the code was initially designed with the intention of being reused. Usually code
that was designed with the intent that it would be modular and reusable is better

documented and easier to modify.

One of the earliest best-known software cost models was the Constructive Cost
Model (COCOMO), released in 1981. This version discounted modified reuse code by
90 percent of what it would have cost had it been built from scratch. The new version of
COCOMO released in 2000, now only discounts reuse by 50 percent. This was changed
because the data and actual experience over the last few years has changed. [Ref. 12]
The savings may vary based upon integration and testing required. = Most estimating

models are adjusted based on the application of the reuse code, the company's prior

19

experience, or are adjusted within the SLOC count. If the program contains a lot of reuse

code, the model selected should be evaluated to determine how the code is estimated.

Statement Type Order of |Includes |Excludes
Precedence

When a line or statement contains more than one type,
classify it as the type with the highest precedence.
Executable 1 X
Nonexecutable
Declarations 2 X
Compiler Directives
Comments
On their on lines
On lines with source code
Banners and nonblank spacers
Blank (empty) comments
10| Blank Lines

w
X

© 00N A~ WN =

(o<1 BN1 K<z K2
P Bad Bad Bad Bt

How Produced Includes |Excludes
Programmed

Generated with source code generators
Converted with automated translators
Copied or reused without change
Modified

Removed X

Py Pad Bad Bad ot

ONO OB~ OWODN -

Table 2. Definition Checklist for SLOC [After: Ref. 9]

3. Environmental Inputs

There are many environmental factors that impact the overall software cost of a
program. These factors are incorporated slightly different in each of the software cost
models. Care should be taken to ensure that the model selected includes all of the
necessary parameters that could impact program costs, and likewise, exclude any
parameters that would adversely impact the program. An example of an actual
questionnaire, sent out to government contractors in order to collect data to prepare a

command and control software development cost estimate, is illustrated in Figure 11.

An example of a common set of environmental factors embedded in the Revised

Intermediate COCOMO (REVIC) model is shown in Table 2. It is beyond the scope of
20

this thesis to address each one of the environmental factors, however, it will include

enough information to provide an understanding of how the models adjust cost.

Please place the applicable rating in the appropriate box.

scale. Language and Tools

Platform Experience

PERSONNEL PRODUCT FAMILIARITY
Rate using the above Management Experience Select One New line of business

SOFTWARE TOOLS Very Highly Automated

COMPLICATING FACTORS

New language

(Check one each for internal/external)

Integration Requirements

Highly Automated Requirements complete at start
Select One Nominal Select One New hardware
Low More than one development location:
Very Low
INTEGRATION:

Internal

Please describe the levels of integration required within this CSCI (internal) and between this CSCI and others (external).

External

Loosely coupled interface, minimum timing constraints & interaction

Closely coupled interface, strict timing protocols, many interrupts

Strict, tightly coupled interface, strictest timing protocols & constraints

OTHER:
What is process maturity level? (e.g., CMM 1-5)

Are there any driving HW resource requirements? (e.g., RAM utilization, hw cycle time,..)
Are ther
Processor Utilization %:

Composite Labor Rate $0.00

Figure 11.

Example of Questionnaire to Industry [From: Ref.14]

Analyst Capability
Programming Team Capability
Project Application Experience
Virtual Machine Experience
Language Experience
Execution Time Constraints
Main Storage Constraints
Virtual Machine Volatility
Computer Turnaround Time
Requirements Volatility

Required Software Reliability
Database Size

Software Product Complexity
Required Reusability

Modern Programming Practices
Use of Softwae Tools

Classified Security Application
Management Reserve for Risk
Required Development Schedule

Table 3. Types of Environmental Factors [After: Ref. 15]

The IPT approach should once again be used to evaluate these factors and assign
expert-judgment values from "very-low" to "very-high," and in some cases from "very-

low" to "extra extra-high," depending on the factor. These subjective factors are then
21

assigned numerical values to be multiplied together to effect overall software cost. The

numerical values are derived from historical databases of similar type programs.

Table 3. is an example of the one of the factors from the REVIC model. The
example reflects that a programmer team ranked in the 90th percentile would receive a
score of "very high," because an experienced programming team can produce more code
in a shorter period of time. Therefore, the database assigns the numerical multiplication
factor of ".71," which would reduce the cost of the estimate. The cost analyst needs to

understand exactly what each factor includes.

Rating Skill Level Factor
Very Low 15th Percentile 1.46
Low 35th Percentile 1.19
Nominal 55th Percentile 1.00
HI 75th Percentile 0.86
Very High 90th Percentile 0.71

Table 4. REVIC Example of Programmer Capabilities [From: Ref. 15]

The software Capability Maturity Model (CMM) is used to assess the
effectiveness of a company's software processes. Table 5. outlines the different process
maturity levels, describes the characteristics of each level, and shows productivity and
risk projections. The DoD requires that companies must have a CMM level of three or
higher to bid on contracts. This ensures but does not guarantee that contractors
submitting bids have the appropriate software development teams with the experience

required to deliver the product on-budget, on-schedule and fully capable. [Ref. 9]

Each of the software models account for the CMM levels in a slightly different
method. For example, the new version of COCOMO II has an input for "Estimated
Process Maturity Level" [COCOMO II], while PRICE S considers several factors such as
efficiency, skills, familiarity and intensity of the effort. Studies have shown that
companies with higher levels of CMM are more likely to perform better in the software
development process. The CMM was developed based on work conducted by Watts
Humphrey of the Software Engineering Institute at Carnegie Mellon University. [Ref. 7]

22

M atu rit
Leuely Characteristics Hey Challenges Results
5 - Improvement fed back into the process - Still human-ntensive process | P 0]
Optiized | - Automated tools used to identify vweakest procesz elements - Maintain organi zation at RU
- Mumerical evidence used to apply technology to critical tasks optimizing level
- Rigorous defect-causal analysiz and defed prevention 0 A
4 (Quantitstive) - Changing technology DL
Managed | - Measured process - Problem aralysis u i
- Minitmum s=t of quality and produdisity measurements - Problem preserntion CT
- Process data stored, anayzed, and maintained TY
3 (Qualitative) - Process measurement I
Defined | - Process defined and institutionali zed - Process analysis
- Software Engineering Process Group leads process improvement - Guantitative gualty plans v
2 (Irtuitive] - Training I
Repegtabie | - Process dependent on individuals - Technical pradices (reviews, T
- Bazicprojed controls estaklished testing) Y =
- Strength indoing similar work, bt peswy challenges prezent major risk | - Process focus (standards,
- rderdy framewaork for improvement ladking Process groups) I
7 (&d hocl/chaotic process) - Projedt management s
Initial - Mo formal procedures, cost egimates, project plans - Project planning K
- Momanagement mechanism to ensure procedures are followed - Corfiguration management
- Tools not well integrated; change control is lax - Software gquality assurance
- Senior Maragement does not understand key issues

Table 5. General Characteristics of Each Maturity Level of The CMM [From: Ref. 9].

For example, a CMM level three certified team with four or more years
experience developing code in a given language and using modern software engineering
methods would score a rating of "extra high." This "extra high" rating would
automatically lower the cost for developing the software. Likewise, a development team
with less than one year of experience working together may receive a rating of "low,"

which increases the risk and cost appropriately. [Ref. 16]

Another environmental parameter that influences several factors is the application
type of the software development. Typical applications for military systems include
command and control, data base management, diagnostics, graphics, message switching,
mission planning, RADAR/Sensor processing, and systems engineering simulation, etc.
The software cost models make adjustments to the overall cost based on application types
by assigning complexity factors to product reliability, software complexity, and

classification types.

For example, if the software application is being developed for a RADAR or Fire
Control system, the software complexity factor would be considered "High," and the cost
would be multiplied notionally by 25 percent to cover the extra cost required to develop
this software. Likewise, if the software is for user interfaces or communications

networks, the software complexity factor may be considered "nominal" and applications
23

"

for administrative data processing may be considered "low." There would not be an
increase in cost for a nominal factor, but the "low" factor would reduce the cost
notionally by 25 percent. The term "notionally" is used because each model has a

slightly different method of accounting for numerical complexity factors. [Ref. 16]

4. Software Baseline Cost Estimate

Once the size, reuse, and environmental parameters have been determined, the
analyst is now ready to estimate the program using one of the estimating methodologies
identified in Chapter II. When considering which method should be used to estimate the
program, the following questions should be asked: how quick does the estimate have to
be completed; and how much detail is required. For example, the program should use a
parametric software cost estimating model if detailed cost and schedule are required. The
estimating model usually is much better than the other methods, because analysts are less

likely to leave out an important parameter.

D. SOFTWARE COST ESTIMATING MODELS

There are several excellent software models available to the program office for
estimating software costs. The following models are currently the most widely used in
alphabetical order): COCOMO II, CostXPert, PRICE S, REVIC/SoftEST, Sage, System
Evaluation and Estimation of Resources (SEER), Software Life Cycle Management
(SLIM). [Ref. 19] Appendix B. includes websites where detailed information on

capabilities and purchase cost can be found.

Most of the estimating models are now personal computer (PC) based, and fairly
easy to operate with a little training. CostXPert, claims an estimate is possible within
fifteen minutes after product installation. At least one independent evaluator said that this
is entirely possible. [Ref. 20] However, most models would require some level of

training to ensure maximum understanding of the tool.

When evaluating cost estimating models, the program office should determine if
the model is pre-calibrated with similar applications that will yield reasonable results. It

may be necessary to calibrate the model for the application. For example, the rating

24

scales used by COCOMO 1II for personnel factors, such as analyst and programmer
capability, may not be suitable for a different organization. The COCOMO II developer
recommends the organization have at lest five data-points to modify the multiplicative
constant and ten data points for calibrating both the calibrating and the baseline exponent

before changing the baseline. [Ref. 12]

When calibrating the model at the contractor level, validation of the model is
accomplished by demonstrating the credibility of the parametric model prior to
submitting an estimate to the government or higher tier contractor. Both calibration and
validation should be conducted on a periodic basis throughout the software's

development. [Ref. 7]

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

III. DATA TO BE ANALYZED

The primary research question for this thesis was centered on the problems that
cause software cost estimates to be inaccurate. The secondary questions were designed to
determine the impact of critical cost drivers on the software cost estimate. Two different
methods were used to collect data for this thesis. The first method involved interviewing
professionals in the software development and cost analysis communities, and former
program managers of major defense programs. The second method involved researching
various resources to obtain specific program data to validate the problems identified by

the professionals.

The data from the interviews came from three categories of professionals: cost
analysis, program management, and academia. Of the six cost analysts interviewed, the
experience estimating software cost ranged from two to twenty years. Five of the
analysts are currently government personnel. Of those, two are assigned to program
offices and the other three work in a Cost Analysis office. One of the cost analysts works
for a prime contractor of a major defense program. The program managers interviewed
included two officers who were former program managers of major defense programs,
and two civilians who are currently working for major defense acquisition programs. The
program managers' experience spans ten to twenty years with both ACAT 1, 2 and 3 type
programs. The instructor interviewed has been teaching software-related courses for
several years at the Defense Acquisition University. These individuals are listed in

Appendix B.

The specific program data comes from two sources. The first data is from a 2002
memorandum concerning contractor performance of a major defense program. This
memorandum provided current quantitative data, which is relevant to most complex,
software intensive, weapon systems of today. The second data source is from a General
Accounting Office (GAO) audit of the Federal Aviation Administration's (FAA) Standard
Terminal Automation Replacement System, conducted in January 1998. Both of these
sources were useful in validating the problems identified by the individuals interviewed.

There were many books, guidebooks, journal articles, and industry briefs that non-

27

quantitatively validated these findings. For example, Table 6, from the Air Force
Software Technology Support Center, produced the Guidelines for Successful Acquisition
and Management of Software-Intensive Systems (GSAM) that included non-quantitative
but useful data on the software risk areas associated with software developments.

Another example of non-quantitative data is shown in Table 7.

The remainder of this Chapter is divided into software cost estimating risk
categories that were derived from the interviews and other sources. The risk categories
are organized first by listing problems identified by the individuals interviewed.
Comments provided by cost analysts and academia will be referenced as "professionals,"
and program management individuals will be referenced as "management." Second,
information in the program data paragraph will be referenced as "defense program" or

"FAA program."

A. REQUIREMENTS

One of the leading causes of inaccurate software cost estimates identified by both
groups interviewed, related to program requirements. The following paragraphs provide
data on the various problems associated with requirements.

1. Interviews

Both professionals and management indicated that program requirements were
usually poorly defined and highly unstable, making it extremely difficult to estimate the
software development cost. The professionals further stated that DoD software intensive
programs include advanced technologies that make the estimating process more complex.
They stated that historical data normally used to compare programs and calibrate
software cost estimating models were not readily available for advanced technologies.
One professional said that a primary problem within Government program offices is that

there is no requirements development framework.

Management stated that budget cuts, politics, and changing user requirements
were constantly affecting requirements baseline. Management also stated that having too
many bosses affected requirements. Another problem identified by management was that

improper assumptions were made on requirements.

28

Program Level Excessive, immature, unrealistic, or unstable requirements
Lack of user involvement

Underestimation of program complexity or dynamic nature

Program Attributes Performance shortfalls (includes defects and quality)

Unrealistic cost or schedule (estimates and/or allocated amounts)

Management Ineffective program management (multiple levels possible)

Engineering Ineffective integration, assembly and test, quality control, specialty
engineering, or systems engineering (multiple levels possible)

Unanticipated difficulties associated with the user interface

Work Environment Immature or untried design, process, or technologies selected
Inadequate work plans or configuration control
Inappropriate methods or tool selection or inaccurate metrics

Poor training

Other Inadequate or excessive documentation or review process

Legal or contractual issues (such as litigation, malpractice, ownership)
Obsolescence (includes excessive schedule length)

Unanticipated difficulties with subcontracted items

Unanticipated maintenance and/or support costs

Table 6. Software Risk Areas [After: Ref. 9]

Lags in the adoption of fundamental metrics

Lags in the productivity measurement technology

Schedules are longer than any other kind of software project
Productivity is lower than for any other industry

Contracts for software have the highest rates of challenges and
litigation

Contractors rank first in layoffs and downsizing

Contractors lag in staff benefits and compensation
Contractors lag in training and education of technical staff
Contractors lag in training of project managers

Contracted software has the highest growth of creeping user
requirements

Contractors less effective at the Software Engineering Institute
maturity levels compared to civilian performance-based contracts

Table 7. Factors Where DoD Software Lags Behind Commercial Programs [After: Ref.24]

29

2. Program Data

The following paragraphs include requirements-related data from the FAA and
defense program that can negatively impact cost. The GAO audit stated that the FAA
program had to increase their estimate for new and modified code by 50 percent after the
first two years based on improper requirements assumptions. The GAO audit stated the
FAA program requirements increased from the first day the development schedule was

set. The audit also indicated the user was dissatisfied with the product. [Ref. 31]

With the defense program, the memorandum stated the contractor had
management errors that included poor requirements definition prior to coding, and design
problems that relied too heavily on a separate program being developed in parallel. The

result was schedule and manpower estimates increased by 35 Percent.

B. SCHEDULE

Determining the success of a program is determined by the following three
parameters: on-time, on-budget, and performs according to requirements. Having a
realistic schedule is necessary in order to achieve success. The following paragraphs
identify schedule risk that ultimately impact cost.

1. Interviews

Analyst and management indicated that exaggerated productivity rates proposed
by contractors impacted schedules. The analyst also stated that historical data to validate
productivity rates was not available. Management indicated that most contractor
software delivery schedules are unrealistic, and that, most of the time, contractors
proposed exaggerated productivity rates to win contracts.

2. Program Data

These paragraphs include data from the FAA and defense program that could
adversely impact the schedule cost. The audit determined that the FAA program
improperly developed their schedule by working backwards from a predetermined date
rather than by estimating the schedule based on the size and complexity of the software
development. Another problem with the FAA program was that productivity rates were

57 percent less than the projected 240 SLOC per man month.

30

With the defense program, the memorandum stated that schedules were primarily
based on exaggerated productivity levels. For example, the contractor proposal indicated
they could produce 300 SLOC per man-month, which included designing, coding, testing
and integrating, but only realized 120 SLOC. The memorandum also stated the
contractor relied heavily on reuse software code from another complex program that was

still in development to further justify an optimistic schedule.

C. PROGRAM PLANNING

Initial program planning is essential to produce software that meets cost, schedule
and performance goals. The following paragraphs outline risks associated with program
planning that negatively impact cost.

1. Interviews

Management indicated that poor planning at the beginning of the program had
lasting impacts over the life of the program. They stated the root cause of poor planning
is inadequately trained staff. For example, management indicated that many of the
software managers and cost analysts were not trained in the latest development processes
and software estimating tools that help develop plans. Likewise, the professionals
indicated that many of the program managers were not trained sufficiently to manage
software intensive weapon systems.

2. Program Data

These paragraphs include data from the FAA and defense program that indicate
poor planning. The audit reported the contractor for the FAA program initially proposed
unrealistic productivity rates. The contractor probably considered this to be strategic
planning instead of poor planning. The audit stated that it was poor planning for the
contractor to wait three months to assign a software manager to the program. The
contractor's timing for implementing a new corporate software development tool early in
the life of the program was also questioned. The program eliminated Partial System Test
1 and compressed the schedule for other test. The air traffic controllers experienced low

user satisfaction with the computer-human interface.

The memorandum for the defense program listed five examples of poor planning

on the part of the contractor which include: 1) initially proposed unrealistic schedules and

31

productivity rates; 2) relied heavily on another program under development for software
reuse; 3) systems engineering and software engineering activities were scattered; 4)
inexperienced in software development methodologies for the programming language;

and 5) overall staff was poorly trained.

D. SOFTWARE MAINTAINANCE AND SUPPORTABILITY

Software maintenance and support can account for over 70 percent of the total life
cycle costs for a software system. [Ref. 22] The following paragraphs identify problems
that impact cost associated with software maintenance and support.

1. Interviews

The professionals interviewed indicated that poorly defined programs at the
beginning, along with unstable requirements, caused software estimates for maintenance
and support to be inaccurate. They said that this occurred primarily because the software
cost estimates were based on initial estimates of source lines of code or number of
functions to be performed by the development.

2. Program Data

These paragraphs include data from the FAA and defense program that could
affect maintenance and support cost in the future. The FAA program eliminated Partial
System Test 1 and compressed the schedule for other tests, including Partial System Test
2, Installation and Integration Tests, and Site Acceptance Tests. The contractor
introduced a new corporate software development tool early in the life of the program.
The memorandum stated the defense program contractor initially had poor requirements
definition prior to coding. The contractor's staff were poorly trained and inexperienced in

the development methodology for the programming language required.

The defense program's contractor had a poorly trained staff and the programmers
were inexperienced in the software methodology employed. The program experienced

poor requirements definition prior to coding.

E. DATA SUMMARY
Chapter 1V will analyze the cost implications by risk category for each of the

problems identified by the professionals, and management personnel. Data from the

32

GAO audit of the FAA program, and the defense program, will also be analyzed.

Chapter V provides recommendations and conclusions to avoid these problems.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

IV. ANALYSIS OF DATA

Chapter III outlined problems associated with software cost estimating
inaccuracies identified by professionals in the software development and cost analysis
communities, and former program managers of major defense programs. Chapter III also
included actual data from two complex software intensive programs. This chapter will
analyze each category of risk identified in Chapter III as well as the potential cost

impacts to a program, for each of the problems identified.

A. REQUIREMENTS ANALYSIS

1. Requirements Definition

The first phase in most software life cycle development programs is requirements
analysis and specification. When requirements analysis is performed poorly, it permeates
throughout the life cycle of the program. For example, if the poorly defined requirements
make it into the request for proposal (RFP), the contractor who was awarded the contract
by the Government would almost certainly have a severely underestimated development
program.

2. SLOC and Function Points Estimates

Most methods for estimating software costs use SLOC or function points as a
parameter to calculate cost. Therefore, if the requirements are unstable or poorly defined,
estimating SLOC and function points is difficult because these initial parameter estimates
will drive the cost for the entire software development. For example, the FAA program
hoped to use 85 percent COTS software and 15 percent new/modified code. However, by
ultimately using less COTS and increasing new/modified code by 50 percent, the original
cost estimate increased by 33 percent.

3. Advanced Technology Impact

Uncertainties associated with advanced technologies within a program make it
difficult to conduct requirements analysis and design programs. Once again, this usually
results in underestimated SLOC and function points. The problem is compounded when

improper complexity factors are applied to the SLOC and function point estimates. The

35

risk for these estimates increase because there is often no historical data against which the
estimate can be compared.

4. User Involvement

Management and data from the audit of the FAA program indicated that changing
requirements from the user impacted requirements analysis. Obviously, the user was not
adequately included in the requirements, design, development and test phases of the
program. This resulted in a product being delivered that did not meet the users
requirements. Having to modify code later in the development phase is more expensive.

S. Requirements Development Framework

One of the professionals mentioned that the Government programs do not always
have a requirements development framework. The requirements framework will ensure
that traceability of the requirements is controlled. The impact of not controlling
requirements is the possibility that requirements may be added or omitted without
properly documenting the change.

6. Budget Cuts and Politics

Management indicated that additional problems with managing requirements
resulted when too many levels of supervision were involved in the management process.
People external to the program office will often impose changes to the program. For
example, budget cuts may reduce the capabilities of the program, which results in a
failure to meet requirements. Additionally, politics may dictate where the program
spends its money, causing critical requirements to be delayed.

7. Improper Assumptions

Improper initial assumptions in the requirements phase typically lead to cost and
schedule problems. For example, the FAA program assumed that 85 percent of the
development would be simple COTS. When the COTS estimate was decreased and the
new/modified code increased two years later, the cost increased by 33 percent over the

original estimate.

B. SCHEDULE REALISM

1. Unrealistic Schedules

36

The realism of the schedule is a key requirement to successfully manage software
intensive program. The contractor must have the personnel, facilities, experience, and the
time required to deliver the software product. Any limitation to the above factors will
cause the schedule to slip, and increase cost for the program. For example, the data
indicated that the defense program lacked experienced using the programming language
methodology. As a consequence, the productivity rate originally proposed at 300 SLOC
per man month decreased to less than 120 SLOC per man month. The contractor then
had to re-baseline at the realized production rate, and the program office was forced to
increase their schedule time by 35 percent.

2. Exaggerated Productivity Rates

Both contractors for the FAA and defense program exaggerated their productivity
rates. One month, the FAA contractor productivity was 57 percent of the projected 240
SLOC per man month. Obviously, at this rate it will take nearly twice as long to
complete the program. As a result, the cost increases because, although the contractor is
producing less, they continue to charge the Government the same rate per hour.

3. Backing into Schedules

Backing into the schedule, or compressing the schedule is not a problem if the
program and contractor have sufficient resources. For example, the program manager’s
schedule may be compressed by one year for any given reason. The program manager
has adequate funding to provide the contractor, however, the contractor may not have the
facilities or manpower to meet the new schedule. Therefore, even having unlimited

funding will not always get the job done. [Ref. 26]

C. INITIAL PROGRAMMING PLANNING

1. Poor Planning and Processes

Poor planning and process will ultimately affect program costs because it will be
difficult to estimate SLOC and function points. For example, if SLOC and function
points are underestimated, then used to calculate maintenance and support cost, the total
life cycle cost would be severely underestimated. The development will be costlier and
the resulting code will be larger. Larger code typically requires more support, and life

cycle cost suffers.

37

2. Staffing and Training Problems

Management indicated the primary reason for poorly planned programs was
inadequately trained staff. Likewise, the professionals stated the program managers were
not sufficiently trained to manage software intensive programs. Properly trained
personnel are required to plan and manage the complex processes, and effectively and
efficiently allocate resources. Poor planning during the requirements and design phase

will have lasting cost implications throughout the life cycle.

The same holds true for the contractors. Both the FAA and defense program had
staffing and training problems that resulted in cost and schedule overruns. The FAA
contractor waited three months to assign a software manager, and had to spend time
training the staff to operate a new software development tool. If these two activities had
been better planned, the cost may have decreased.

3. Reuse and COTS

Planning to utilize reuse and COTS code is considered good planning. However,
both management and professionals, along with data from both programs, indicated that
the program and the contractor often underestimate the utility of using COTS and reuse.
When this occurs, schedules and cost become unrealistic. The cost estimates increase

substantially when new/modified code must be developed.

D. SOFTWARE MAINTENACNE AND SUPPORTABILITY

1. Initial Unstable Requirements

The professionals indicated that poorly defined initial requirements was the chief
reason for underestimated software maintenance and support cost. This simply goes back
to underestimating SLOC and function points. When those estimates are inaccurate, the
entire estimate is inaccurate.

2. Initial Design

Software needs to be designed to be reliable, understandable, and modifiable. All
three of these factors lower the cost of maintenance and support. For example, the
defense program contactor had a poorly trained staff with inexperience in the
programming language methodology. It follows that this would impact how well the

code was written. Also, both programs underestimated SLOC based on COTS and reuse

38

designs, which caused the maintenance and support cost to be significantly
underestimated at the end of the program.

3. Testing Requirements

Testing takes place throughout the development of the program. Some of these
tests include unit, integration, system, and acceptance testing. If the contractor neglects
to perform any of these tests, the result is typically software that lacks full functionality.
The resources required to remedy the problems will severely impact the cost, schedule
and performance of the program. The GAO audit stated that the typical outcome, in this
event, is an increase in the expected development cost, but a decrease in quality, and a

program that is behind schedule. Ref. 31]

E. DATA ANALYSIS SUMMARY
Chapter V will summarize Chapters III and IV, and present recommendations that
should improve the accuracy of software cost estimates. Chapter V will also readdress

the primary and secondary research questions.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

V. CONCLUSIONS AND RECOMMENDATIONS

The primary research question for this thesis was centered on the problems that
cause software cost estimates to be inaccurate and recommended solutions that are
available to the program manager. The secondary questions were designed to focus on
the critical cost drivers that have a significant impact on cost. The answers to these
questions are located in Chapters III and IV, and are divided into four risk categories: 1)
requirements; 2) schedule; 3) program planning; and 4) maintainability and
supportability. This Chapter includes conclusions and recommendations for each of the

primary risk categories, and an overall conclusion of the thesis.

A. REQUIREMENTS ANALYSIS STABILITY

Everyone interviewed for this thesis stated that the primary problem in estimating
software was poorly defined and unstable requirements. There were numerous articles
and industry briefs to support this premise. For example, the Standish Group reported in
their analysis that the major reason that software projects fail is because the requirements
were incomplete. [Ref. 2] When requirements are unstable and incomplete, it has been
demonstrated that both Government and contractors will inaccurately estimate SLOC and
function points. For most software cost estimating methods, those are the critical
parameters required to calculate cost. For example, when the FAA program experienced
problems, and the SLOC count increased by 50 percent, the original cost estimate

increased by 33 percent. [Ref. 31]

The analysis also concluded that the following activities contributed to unstable
and changing requirements: 1) user's mission continually evolving; 2) lack of user
participation in program IPTs; 3) incorporation of new and advanced technologies; 4)
changing budgets; 5) political influences; 6) and improper initial assumptions. Any and
potentially all of these activities can significantly impact the program. The program

manager should continuously assess what can go wrong with the program.

Even well-defined programs experience requirements growth. For example,

analysis of several thousand applications during benchmark and baseline studies

41

determined that requirements creep averaged 2 percent per month. [Ref. 24] These small
monthly changes can have significant cost, schedule and performance impacts throughout

the development of the software. [Ref. 9]

Program managers should understand that changes in requirements are inevitable.
Therefore, the program manager should design a software architecture that is flexible and
tolerant to change and also develop a requirements framework plan. These documents
should be written in a clear, concise, and quantifiable manner. These documents and
processes will serve as a primer to ensure requirements are testable and compliant with
mandatory standards. The documentation will also provide the basis to manage and
measure the success of the program. There are many program management, software
development, and software cost estimating tools available to assist the program manager.
When choosing a commercial model the program manager should select one that meets

the organization's needs. Typical commercial model capabilities are listed in Table 8.

B. SCHEDULE REALISM

The software cost estimate is based on the program following a given schedule.
Any time there is a deviation in schedule there is a cost impact. The leading cause of
schedule slips identified during the research was contractors exaggerating their software
productivity rates. Typically, the contractor's productivity rate is measured by how many
SLOC or function points can be written by one person in one month. When the contractor
exaggerates this number, as they did in both of the programs discussed in this thesis, the
impact is an increase in both costs and schedule. The contractor must have the people,

experience, facilities, and time to deliver the software product.

The first recommendation for the program manager is to plan and document the
entire program. This would include scheduling, resources, development activities, test
activities, software configuration management, software quality management, risk
management, training, deployment, support and maintenance. A complete baseline of
measures should be performed at the beginning of the program, to include, level of effort,
number of COTS components, personnel profiles, project characteristics, rating standard

used, risk, software product size, and total software cost. Once these baselines are

42

established, effectiveness should be tracked and measured throughout the program. [Ref.

22]

Most Models include: Some Models Also Include:

Sizing logic for specifications, source code, Risk and value analysis.
and test cases.
Estimation templates derived from historical
Phase-level, activity-level, and task-level data.

estimation.
Links to project management tools such as
Support for both function point metrics and Artemis or Microsoft Project.

source lines-of-code (SLOC) metrics.
Cost and time-to-complete estimates mixing
Support for specialized metrics such as historical data with projected data.
object-oriented metrics.
Currency conversions for international
Support for backfiring or conversion projects.

between SLOC and function points.
Inflation calculations for long-term projects.
Support for software reusability of various

artifacts. Estimates keyed to the Software Engineering
Institute's Capability Maturity Model®

Support for traditional languages such as (CMM®)

COBOL and FORTRAN.

Support for modern languages such as JAVA
and Visual Basic.

Quality and reliability estimation.

Table 8. Commercial Model Estimating Capabilities [After: Ref. 24]

The second recommendation is to use commercial software development and cost
estimating models to develop baseline estimates. For best results, it is recommended that
an IPT be used to determine which values/factors should be input into the model. It was
highly recommended by the professionals that two or more models be used to compare

results.

Having this information prior to sending out a RFP will provide the program
office a basis to compare proposals. It is also recommended that the Government define
in the RFP what is considered a SLOC or function point. One method is to use a matrix

similar to Table 2. [Ref. 9] Additionally, the RFP should include a matrix similar to
43

Table 9 to determine the programmer/developer years of experience for a given software

language. [Ref. 27]

The proposals should include information about the contractor's CMM level. A
contractor with a CMM level IV would most likely have a more realistic cost and
schedule proposal. For a complex software intensive program, the program office should
consider contractors with CMM levels of IV or V. A contractor certified at level III may
propose a lower bid, but they most likely would not be the best value. For example,
studies have shown that improving one CMM level can reduce software development
cost from 4-11 percent. [Ref. 28] Contractors, achieving level 5 are positioned to
maximize quality and productivity for developmental efforts. [Ref. 29] All of these tools
will make it easier for the program office to compare proposals and select the contractor
with the highest probability of delivering the product on-time, on-budget, and fully

mission capable.

X[rnas Ada 83 Ada 3X 00 Methodology| CASE Teols
Yeargd <1 | 45 |8404 <1 | 4-2] 3+ | =1 | 4-5 |5104 <1 | 45 |&104

Firm e
Contractor

Gubgontrackor
I otal

Table 9. Example of Developers Years Experience [From: Ref. 27]

Once proposals are received, one of the managers suggested using a
benchmarking tool along with estimating model results to determine if the proposals are
realistic. The manager stated the tool is also useful after contract award to monitor
productivity levels. The database for the benchmarking tool in Table 10 is composed of
500 projects completed in the last seven years. The data is scoped to include requirements
analysis, architectural design, development, and software integration and test. Note, all
the data is presented in ranges. Donald Reifer stated in Crosstalk Journal, that although
an average productivity of SLOC/staff month is provided, the benchmarking tool is best
used to determine if a productivity level falls within a range for a given application.
Reifer also expressed concern that people would misquote or use the numbers incorrectly.
Therefore, it is strongly recommended that anyone who wishes to use this data, should
refer to the March 2002 Crosstalk Journal to avoid incorrect interpretation of the

numbers. [Ref. 30]
44

Application Number Size Average Range Example
Domain of Range Productivity Applications
Projects | (KSLOC) | (SLOC/SM) |} (SLOC/SM)

Automation 55 25-650 245 120-440 |Factory automation
Command & Control 43 35-4,500 225 95-330 Command centers
Data Processing 36 20-780 330 165-500 |Business systems
Envrionment/Tools 75 15-1,200 260 143-610 JCASE tool, compilers
Military-Airborne 38 20-1,350 105 65-250 |Embedded sensors
Military-Ground 52 25-2,125 195 80-300 Combat information center
Military-Missile 14 22-125 85 52-165 |Guidance, navigation
Military-Spaceborne 18 15-465 90 45-175]Attitude control system
Scientific 33 28-790 195 130-360 |Seismic processing sys.
Telecomunications 48 15-1,800 250 175-440 |Digital switches
Trainers/Simulations 24 200-900 224 143-780 |Virtual reality sim.
Web 64 10-270 275 190-975 |Client/server sites

Table 10. Software Productivity (SLOC/staff month) [After: Ref. 30]

C. PROGRAMMING AND PLANNING

Poor programming and planning effects software cost estimates in the same
manner as requirements and schedule. They all affect the SLOC and function point
estimates. One method to mitigate risk associated with programming and planning is to
use the Sixteen Critical Software Practices '™ for performance-based management,
developed by the Software Program Managers Network. The sixteen practices include:
1) adopt continuous program risk management; 2) estimate cost and schedule
empirically; 3) use metrics to manage; 4) track earned value; 5) track defects against
quality targets; 6) treat people as the most important resource; 7) adopt life cycle
configuration management; 8) manage and trace requirements; 9) use system-based
software design; 10) ensure data and database interoperability; 11) define and control
interfaces; 12) design twice, code once; 13) assess reuse risks and costs; 14) inspect
requirements and design; 15) manage testing as a continuous process; and 16) compile

and smoke test frequently. [Ref. 22]

One of the professionals interviewed stated that Government program offices
should implement the Software Acquisition (SA) CMM within their program. One
ACAT 1 program recognized that imposing the CMM process on the contractor could not
reap all the benefits without the program office also instituting the SA CMM. By
focusing the project office on standardized process, the program manager was able to turn

around a struggling software development and achieve a successful milestone B decision.

45

The SEI led a group of Government and industry leaders to develop, pilot-test, and plan
the implementation of the SA-CMM. [Ref. 23]

All of the professionals and managers indicated that having an adequately trained
staff is critical for a program to have a successful software development. In the past,
program managers were inadequately trained to manage complex software intensive
programs. However, the DoD recognized this deficiency and has been aggressively
educating officers and civilians to mitigate this problem. Therefore, it is recommended
that future program manager should have advanced degrees, preferably in program

management.

Successful implementation of the various plans identified in Paragraph B requires
the staff to be trained in those processes. There are many short courses available from
the Defense Acquisition University (DAU) in the areas of program management,
software acquisition and cost analysis. Several of these courses are available through
distance learning over the Internet. [Ref. 32] Acquisition personnel are required to attend

many of these courses to become certified level III in their primary field.

The program manager should ensure that all of the staffs training plans are
current. Personnel should be encouraged to take advantage of DAU sponsored courses.
For example, the software cost estimating class teaches acquisition personnel to develop
and evaluate cost estimates for life cycle management, plan and manage DoD system
acquisitions, evaluate and negotiate contract proposals, and analyze cost and performance

tradeoffs.

Training is also required for the sophisticated commercial software estimating
models. The program manager should ensure that cost and technical software personnel
have a thorough understanding of how the model works. It is also imperative that

personnel know how to calibrate the models to maximize their effectiveness.

One analyst interviewed reported that the program manager, of a major ACAT 1
program recognized that imposing the CMM process on the contractor could not reap all
the benefits without the program office also instituting the Software Acquisition CMM.
By focusing the project office on standardized processes, he was able to turn around a

struggling software development, and achieve a successful milestone B decision.
46

Implementing any and all of these plans, processes, and procedures will improve the

probability of success for the program.

D. SOFTWARE MAINTAINABLITY AND SUPPORTABILITY

Software maintenance and support is a significant cost driver over the total life of
the program. It is imperative that software developers design software to be reliable,
understandable and modifiable. Improving the initial design will hopefully reduce the
trend where maintenance and support costs are 40-80 percent of the total software life
cycle cost. Figure 12 represents current maintenance and support data for data processing

programs. In both cases the maintenance costs for these programs would be significant.

Other
8%

Implementation
9%

Requirements

13% 49%

Validation

Figure 12. Support Cost for Data Processing Environments [After: Ref. 9]

It is recommended that modern software estimating tools be used to estimate the
total life cycle cost of the program. However, when comparing results with other models
or against other programs, it important to understand how the models differ on techniques
to estimate total life cycle cost and in particularly what is included in the maintenance
and support cost. A comprehensive list of support activities is provided in Table 11 to

determine what level of support is required for the program. [Ref. From: 9]

47

1|Maintainability Requirement for a Maintenance Task Analysis (MTA)

2|FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes and Effects
and Criticality Analysis (FMECA) to be performed to functional dept

3]Defect Rate Requirements to state a contractual target defect rate per lines of code over

an agreed period including confidence limits

4]Failure Identification Design to provide features that achieve failure detection and location times
5]Failure Snapshot Design to provide features that achieve failure detection and location times
6] Tool Kit Provision of User/Maintainers software tool kits to aid failure location
7|Loading and Saving Data |Design to allow loading or saving data in specified times

Config. Identification

User/maintainer able to identify the configuration status (version) without
accompanying documentation

Exception Handling

Design to allow exception handling to preclude failure conditions from
aborting software during operations

10

Sup. Policy Constraint

Use Study to include what the software must do and not do

11

Support Maint. Policy

Support specific maintenance policies and manpower ceilings and skill level
availability to be stated

12]SW Sup. & Maint. Cat. Categories of software support and maintenance to be stated

13|Media Proposed media must: (a) suit the environmental requirements, and (b) be
acceptable as a consumable item

14]Media Copying Simplify copying and distribution

15

Media Marking

To allow physical and internal marking; safety critical items to be separately
marked

16]Packaging Media packaging to be consumable, reusable, and robust

17]Handling Media to require no special precautions and meet Use Study requirements

18]Storage Media to require no special precautions or facilities and meet Use Study
requirements

19| Transportation Media and packaging to require no special requirements

20| Training, User User training required to detect failures and invoke exception handling

21

Training, Support

Support training required to detect and locate failures and invoke exception
handling

22|Publications User and Support publications will be required

23| Definitions The Requirement must include contractually agreed upon definitions of:
incident, fault, failure, defect, reliability, and failure categories

24|Resources Cost estimates must be sought for software maintenance

25| Test Tools Contractor-owned and maintained software test tools and documentation
must be provided

26| Test Tool Access Access to test tools to be provided to software support personnel

27

Incident/Failure Reporting

Incident and failure reporting to be available

Table 11.

Software Supportability Checklist [From: Ref. 9]

48

E. SUMMARY

Staffing, training, processes and tools are the keys to improving software
development programs and improving the accuracy of the software cost estimates. For
multi-million dollar programs, the program manager should purchase a couple of modern
estimating tools, and hire a professional consulting firm to develop a customized

benchmarking tool.

The program manager should establish a cost IPT that includes representatives
from each of the technical areas of the program. The cost analyst should also participate
in all of the technical IPTs. Because many program offices have small staffs, it may be
necessary to award a contract for a Systems Engineering Technical Assistance (SETA)
support contractor. With SETA support, the cost team can effectively attend all the

meetings, run the cost models and collect data required to calibrate the models.

F. RECOMMENDATIONS FOR FURTHER ANALYSIS

Recommendations for further analysis include: 1) examining the implementation
of the Software Acquisition CMM for Government program offices; 2) investigating
maintenance and support cost to reduce cost; 3) and developing a case study on a
program that is successfully implementing a suite of modern program management,
software development and cost models.
G. VALAUBLE RESOUCES

Some of the more valuable resources that would benefit the program manager
include; The Parametric Estimating Handbook; Joint Industry/Government, Spring 1999,
The Guidelines for Successful Acquisition and Management of Software-Intensive
Systems, (GSAM) Version 3.0, May 2000, (both of these are in the Defense Acquisition
Deskbook CD, March 2002), The Program Manager's Guide for Managing Software, and

the monthly CrossTalk Journals, and the Software Engineering Institute's website.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

APPENDIX A. INDIVIDUALS INTERVIEWED

Mr. Jason Wilson

Cost Analysis

Research Development Acquisition Office
Space and Missile Defense Command

Mr. Randy Mills

Cost Analysis

Research Development Acquisition Office
Space and Missile Defense Command

Ms. Robbie Holcomb
Cost Analysis

Research Development Acquisition Office
Mr. Ed Strange

Ms. Beverly Fuller
Operations Research Analyst
Program Executive Office, Tactical Missiles

Mr. Gary Fuller

Manager

Future Combat Systems

T&E Test Resources & Facilities
The Boeing Company

Mr. Ken Shipman

Software Program Manager

JLENS Project Office

Program Executive Office, Air and Missile Defense

Mr. Jerome Olerich

Software Program Manager
Comanche Project Office

Program Executive Office, Aviation

Ms. Martha Spurlock

Software Cost Estimating and Statistics Instructor
Defense Acquisition University

Mid Atlantic Region Fort Lee Center

LTC (ret) Brad Naegle
Graduate School of Business & Public Policy
Naval Postgraduate School

51

COL (ret) Dave Matthews
Graduate School of Business & Public Policy
Naval Postgraduate School

52

APPENDIX B. SOFTWARE COST ESTIMATING MODEL
WEBSITES

Sage
http://www.seisage.com/sage.htm

CostXPert
http://www.costxpert.com/

COCOMO 11
http://sunset.usc.edu/research/COCOMOII/

PRICE S
http://www.pricesystems.com/

SEER
http://www.galorath.com/home.shtm

REVIC and SoftEST
http://sepo.spawar.navy.mil/sepo/estimation.html

SLIM
http://www.qsm.com/

53

THIS PAGE INTENTIONALLY LEFT

54

LIST OF REFERENCES

1. Information Resources Management College, National Defense University,
Slaying the Software Dragon, by Michel, John, Lt. Col., 1998

2. The Standish Group, T23E-T10E, Standish Group Report, 1995

3. Boehm, Barry, Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981

4. Department of Defense, Department of Defense Directive (DoDD) 5000.2-R
Defense Acquisition, Washington, D.C., 1999

5. The Deputy Secretary of Defense Memorandum, Subject: Defense Acquisition,
Oct. 2002

6. The Deputy Secretary of Defense, Interim Defense Acquisition Guidebook, Oct.
2002

7. Defense Contract Management Command, Parametric Estimating Handbook
Joint Industry/Government, Spring 1991

8. Department of Defense Information Officer Memorandum, Use of the Ada
Programming Language, April 1997

0. Department of the Air Force, Software Technology Support Center, Guidelines
for Successful Acquisition and Management of Software-Intensive Systems, (GSAM)
Version 3.0, May 2000

10. Pressman, Roger, Software Engineering A Practitioner's Approach, McGraw Hill,
Boston, MA, 2001

11. Department of Defense, The Strategic Defense Initiative Organization, Sofiware
Cost Estimating: Life Cycle, Models, and Techniques Training Manual, April 1993

12. Boehm, Barry, and others Software Cost Estimation With COCOMO 11, Prentice
Hall, Upper Saddle River, NJ, 2000

13. Software Engineering Institute, CMU/SEI-92-TR-19, ESC-TR-92-017, Software
Measurement for DoD Systems: Recommended for Initial Core Measures, Carleton,

Anita, and others, 1992

14. Joint Single Integrated Air Picture, Systems Engineering Task Force, Cost Benefit
Analysis Questionnaire, adapted from CostXpert Model, 2002

55

http://www.qsm.com/

15. REVIC, Software Cost Estimating Model User's Manual, ver. 9, 1991

16. SEER Quick Reference Guide, Version 1.31, Galorath Associates, Inc., Los
Angeles, CA, 1992

17. Price S Estimating Cost and Schedule Guide, 1st ed., Price Systems, L.L.C., Mt.
Laurel, NJ, 1998

18. DoD 5000.4-M, Guidelines for the Preparation and Maintenance of a Cost
Analysis Requirements Document (CARD), 1992

19. Dean, Joe, "Software Models What Model is Right for Me?,"” brief presented at
Software Engineering Institute Conference, 2000

20. Appleyard, James, Project Management Resources for the Program Manager,
http://www.projectmagazine.com/sept01/costx1.html, 10 Dec. 2002

21. Ramgolam, Rakhee, 4 Guide to Selecting Software Metrics for the Acqusisition of
Weapon Systems, Master's Thesis, Naval Postgraduate School, Monterey, CA,
September 2001

22. Department of Defense, Program Manager's Guide for Managing Software, Draft
0.6, June 2001

23. Software Engineering Institute, Software Acquisition Capability Maturity Model,®
http://www.sei.cmu.edu/arm/SA-CMM.html, 10 December, 2002

24. Jones, Capers, "Software Cost Estimation in 2002", Crosstalk, The Journal of
Defense Software Engineering, Vol. 15 No.6, June 2002

25. Stark, George, and others, An Examination of the Effects of Requirements
Changes on Software Maintenance Releases, http://members.aol.com/GEShome/
ibelieve/jsmregres.PDF, 7 December, 2002

26. Puttman, Lawrence; and Myers, Ware, "Control the Software Beast With Metrics-
Based Management", Crosstalk, The Journal of Defense Software Engineering, Vol. 15
No.8, August 2002

27. Department of Defense, Ada 95 Adoption Handbook; A Guide to Investigating
Ada 95; Ver. 1.2, September, 1995

28. Clark, Brad, "Quantifying the Effects on Effort of Process Improvement." IEEE
Software Nov./Dec. 2000

56

29. Diaz , Mark; King, Jeff, "How CMM Impacts Quality, Productivity, Rework, and
the Bottom Line", Crosstalk, The Journal of Defense Software Engineering, Vol. 15
No.3, March 2002

30. Reifer, Donald, "Let the Numbers Do the Talking", Crosstalk, The Journal of
Defense Software Engineering, Vol. 15 No.3, March 2002

31. General Accounting Office, Air Traffic Control: Timely Completion of FAA's
Standard Terminal Automation Replacement System Software Is at Risk, GAO/AIMD-
98-41R, January 1998

32. Defense Acquisition University (DAU) Website, Course Catalog,
http://www.dau.mil/ catalog/ cat2003/Chapter4.pdf8, December 15, 2002

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center

Ft. Belvoir, Virginia

. Dudley Knox Library
Naval Postgraduate School
Monterey, California

. Mr. Brad Naegle
Naval Postgraduate School
Monterey, CA

. Mr. William C. Reeves

U.S. Army Space and Missile Defense Command
Huntsville, AL

. Mr. Richard H. Brown

U.S. Army Space and Missile Defense Command
Huntsville, AL

. Dr. Latika Becker

U.S. Army Space and Missile Defense Command
Huntsville, AL

59

	I.INTRODUCTION
	A.PURPOSE
	B.BACKGROUND
	C.SCOPE
	D.RESEARCH QUESTIONS
	1.Primary Research Question
	2.Secondary Research Questions

	E.METHODOLOGY
	F.ORGANIZATION
	G.BENEFITS OF THE ANALYSIS

	II.METHODOLOGIES, MODELS AND PROCESSESS
	A.PRIMARY SOFTWARE DEVELOPMENT METHODOLGIES
	1.Waterfall/Traditional
	2.Evolutionary Development
	3.Incremental Development
	4.Prototyping Development
	5.Spiral Development
	6.Object-Oriented Development

	B.PRIMARY METHODS TO ESTIMATE SOFTWARE COSTS
	1.Analogy
	2.Parametric Estimating
	3.Bottoms-up Approach
	4.Engineering Judgment

	C.SOFTWARE COST ESTIMATE PROCESS
	1.Design Baseline
	2.Software Size
	3. Environmental Inputs
	4.Software Baseline Cost Estimate

	D.SOFTWARE COST ESTIMATING MODELS

	III.DATA TO BE ANALYZED
	A.REQUIREMENTS
	1.Interviews
	2.Program Data

	B.SCHEDULE
	1.Interviews
	2.Program Data

	C.PROGRAM PLANNING
	1.Interviews
	2.Program Data

	D.SOFTWARE MAINTAINANCE AND SUPPORTABILITY
	1.Interviews
	2.Program Data

	E.DATA SUMMARY

	IV.ANALYSIS OF DATA
	A.REQUIREMENTS ANALYSIS
	1.Requirements Definition
	2.SLOC and Function Points Estimates
	3.Advanced Technology Impact
	4.User Involvement
	5.Requirements Development Framework
	6.Budget Cuts and Politics
	7.Improper Assumptions

	B.SCHEDULE REALISM
	1.Unrealistic Schedules
	2.Exaggerated Productivity Rates
	3.Backing into Schedules

	C.INITIAL PROGRAMMING PLANNING
	1.Poor Planning and Processes
	2.Staffing and Training Problems
	3.Reuse and COTS

	D.SOFTWARE MAINTENACNE AND SUPPORTABILITY
	1.Initial Unstable Requirements
	2.Initial Design
	3.Testing Requirements

	E.DATA ANALYSIS SUMMARY

	V.CONCLUSIONS AND RECOMMENDATIONS
	A.REQUIREMENTS ANALYSIS STABILITY
	B.SCHEDULE REALISM
	C.PROGRAMMING AND PLANNING
	D.SOFTWARE MAINTAINABLITY AND SUPPORTABILITY
	E.SUMMARY
	F.RECOMMENDATIONS FOR FURTHER ANALYSIS
	G.VALAUBLE RESOUCES

	APPENDIX A.INDIVIDUALS INTERVIEWED
	APPENDIX B.SOFTWARE COST ESTIMATING MODEL WEBSITES
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

